Revisited algorithms for gamma cameras with $\mathrm{LaBr}_{3}(\mathrm{Ce})$ continuous crystals

Francesco L. Navarria ${ }^{1,22^{*}}$, Giuseppe Baldazzi ${ }^{1,2}$, Paolo Bennati ${ }^{3,4}$, Dante Bollini ${ }^{1}$, Valentino O. Cencelli ${ }^{5}$, Maria N. Cinti3,4, Matteo Davi ${ }^{1,2,2}$, Nico Lanconelli ${ }^{1,2}$, Sergio Lo Meo ${ }^{1,2}$, Giuliano Moschini ${ }^{6,7}$, Roberto Pani ${ }^{3,8}$, Rosanna Pellegrini ${ }^{3,8}$, Andrea Perrotta ${ }^{1}$, Francesca Vittorini ${ }^{3,4}$

INFN - Bologna, Italy
${ }^{2}$ Physics Dept., Alma Mater Studiorum - University of Bologna, Bologna, Italy INFN - Roma I, Italy
${ }^{4}$ Physics Dept., "La Sapienza" University, Roma, Italy
${ }^{5}$ INFN - Roma IIII, Italy
${ }^{6}$ Physics Dept., University of Padova, Padova, Italy ${ }^{7}$ INFN-LNL (Italy)
${ }^{8}$ Experimental Medicine Dept., "La Sapienza" University, Roma, Italy Recent developments of small Field of View (FoV) gamma cameras based on $\mathrm{LaBr}_{3}(\mathrm{Ce}$) crystals make their application as a gamma imager for SPECT very attractive. The excellent light yield and the fast decay of $\mathrm{LaBr}_{3}(\mathrm{Ce})$ provides the potential to replace NaI(TI). We use a GEANT4 Monte Carlo simulation to model the point spread function (PSF) of a gamma imager consisting of a large LaBr_{3} (Ce) slab read out by a Hamamatsu H8500 64 ch Flat Panel Multi Anode Photomultiplier (MA-PMT). We assume the "Polished" model in GEANT4 which agrees well with available experimental data for our crystals. The aim of the present work is to study different algorithms for reconstructing the impact position of a 99 mTc 140 keV photon hitting the crystal. Detailed simulation of the optical photons and of all the boundary layers of the imager is carried out to produce the light pulse seen by the MA-PMT. As it is well known, a linear algorithm suffers from bad linearity because of reflections and absorptions from the sides of the crystal. This turns into a distortion of the image and a poor position resolution. A quadratic algorithm allows the linearity to be recovered close to the lateral edges of the crystal, and a cubic algorithm can improve further the linearity and extend it. The position resolution, which improves substantially using a quadratic with respect to the linear algorithm, seems however not to improve with higher powers. A Gaussian algorithm for fitting the light pulse shape has also been tried with satisfactory results for the position linearity. The Gaussian model can include reflections and absorptions from the sides of the crystal and permits the deposited energy to be recovered even close to the side boundaries. Some of the results of the simulation are compared with experimental data.

