

Tevatron luminosity

- Enormi progressi sulla luminosita'!

 £_{max} ~ 9×10³¹ (22.6.04)
 - Est. max. senza recycler 7-8x10³¹
 - Goal with recycler: 2x10³²
 - Delivered/on tape 600/450 pb⁻¹
 - Current analyses on ~250 pb⁻¹ data (Feb.02-Feb.04)

Tevatron luminosity

Luminosita' integrata meglio delle previsioni "design"

Extended Tev goals

N.Moggi – Assemblea di Sezione INFN – Bologna, 5 Luglio 2004

Stato del rivelatore

- Il rivelatore CDF ha funzionato molto bene con una importante eccezione:
 - Si e' osservata una considerevole perdita di guadagno della camera centrale (COT) nel Febbraio 2004
- Il trigger richiede continue attenzioni vista la rapida crescita della luminosita'

Problemi della COT

- COT has experienced an unexpected gain loss ~ 20%/yr
 - Chamber was operating at strongly reduced gain to prevent further damage in March - May 04
- > COT problem solution: O_2
- x20 increase of gas flow: slows degradation
- Add 150 ppm oxigen: heals chamber !
 Now back to mid-2002 operating conditions

Problemi del Trigger

Continuously update to deal with higher luminosity

- Jan. 2004 (\mathcal{L}_{init} = 4.4E31 cm⁻²s⁻¹): L1A/L2A/L3A: 11kHz/280Hz/50Hz with ~ 26% deadtime
 - L1: improve prescales and XFT
 - L2: cut on muons, faster code, SVT fast abort, Road Warrior (Italy)
 - L3: 64 more CPU's, faster code
 - \rightarrow (L_{init} = 5.0E31 cm^{-2}s^{-1}): L1A/L2A/L3A: 18kHz/280Hz/73Hz with ~ 4% dead time, but...
- > Now we have to deal with $\mathcal{L}_{init} \sim 1.0E32 \text{ cm}^{-2}\text{s}^{-1} \parallel \parallel$

Dealing with trigger :

- Increase all control trigger prescales
- Tighten physics triggers
- Proceed full speed with all planned trigger upgrades
 - Italian contribution is Road Warrior (mostly done) and SVT upgrade

Upgrade per il Run IIb (2005-06)

- SVX II Cancellato nel 2003 (Bologna)
- SVT Upgrade in progress
- CPR Upgrade in progress

World's best results measured by CDFII

✤ Charm

Misura di BR e CP asymmetry su Cabibbo suppressed D^o decay

- ✤ Bottom
 - Misura di decadimenti e BR del B_s
 - Misure di massa di $B^+, B^0, B_s \in \Lambda_b$
- 🛠 Тор
 - Misura della sezione d'urto di produzione di coppie t-tbar
 - Misura di BR(t->Wb)/BR(t->Wq)
- ✤ EW
 - Misure di precisione su produzione di W e Z
 - Prima osservazione di produzione di coppie WW in p-pbar
- Exotics

- Nuovi limiti su ricerca di nuove particelle, SUSY e extra-dimensions

Responsabilita' di CDF-Bologna

Gestione degli alimentatori di alta tensione di tutta la sezione calorimetrica End-Plug:

Ottima stabilita' del sistema per tutto il periodo di run

- Gestione del software di controllo del sistema di alimentazione sopra citato:
 - monitor on-line
 - operabilita' sia locale che remota

Attivita' per il 2005

Attivita' connesse all'analisi dati

- Controllo e mantenimento di 2 trigger speciali, per selezione di eventi MB ad alta molteplicita' e per selezione di eventi multijet
- Riduzione su n-tuple dei dati di MB
- Riduzione su n-tuple dei dati di trigger multijet

Analisi fisica

- * Analisi dei sistemi a molti corpi in interazioni con basso momento trasferito
- Studio di produzione di top in eventi multijet

Situazione CDF Run II

☐ Min Bias Feb2002 – Feb2004: processati ≈ 270/450 pb⁻¹ ≈ 17 M eventi MB (5xrun1)

 $(DST = 1640 \text{ Gb} \rightarrow \text{root-ple} = 310 \text{ Gb})$

a Bologna

Le analisi

□ Minimum Bias Run1 (ma mancano dati 630 GeV)

- Eventi di alta molteplicita':
 - \triangleright <p_T> vs mult
 - distribuzioni di mult ???
- □ Potenzialmente buon tracking con i nuovi layers di silicio (3D)
 ▷ p_T>250 MeV/c && |η|<2.0
 - efficienza ~ 0.8 migliorabile
- Scomposizione di heavy flavors nel Min Bias (ud, s, c, b) MinBias = somma ???
- □ ... vostri suggerimenti ...

...segnali (?)

- \Box Misura $\langle E_T \rangle^{\text{cella}}$:
 - 1. cella = gruppo 3x3 torri calorimetro
 - 2. somma E_T cella
 - 3. media E_T celle "accese" in ogni evento
 - 4. distribuzione $\langle E_T \rangle^{\text{cella}}$
- Run2: statistica x 10
- Necessita produzione MC heavy flavors

All hadronic cross section

- The tt-bar production x-section measured in the all hadronic channel for
 - $-L = 165 \text{ pb}^{-1}$,
 - M_{top} = 175 GeV ,
 - kinematical selection && ≥ 1 b-tags ,

amounts to:

$$\sigma_{t\bar{t}} = 7.8 \pm 2.5(stat)_{-2.3}^{+4.7}(syst) = 7.8_{-3.4}^{+5.3} \, pb$$

N.Moggi – Assemblea di Sezione INFN – Bologna, 5 Luglio 2004

SVT Upgrade

- Prototype AM Chip submitted for production June 21
- Plan for production in early 2005
- With real design less patterns/chip \rightarrow more chips needed
- Additional plans of SVT upgrade being made at CDF (more chips,additional board modifications CPR Upgrade
- M&S: All material at Fermilab
- Module production started : ~50% modules finished (Italian techs contribution)
- HV work in progress
- Timeline: Installation starts September 04/Ends December 04
 - Module construction ends in July
 - On schedule
- Performance of first modules as expected
 - Production at full speed

- o Prodotto in coppie al Tevatron $(\sigma = 7pb)$
- o In accordo con lo SM decade: $t \rightarrow Wb$
- o Gli stati finali possono essere (I = e o μ)

$$t t \rightarrow I v b I v b \Rightarrow dilepton (5\%)$$

t t
$$\rightarrow$$
 I v bqqb \Rightarrow lepton + jets (30%)

t t
$$\rightarrow$$
 bqqbqq \Rightarrow all hadronic (45%)

Il canale all-hadronic

- o Il canale all-hadronic:
 - BR alto (44%)
 - S/B molto piccolo
- L'analisi del RunI (110pb⁻¹) usava due strategie:
 A) Tight Kinematic + >= 1 btag
 - B) Loose Kinematic + >= 2 btag
- o RunII (60pb⁻¹ analizzati)
 - stiamo riproducendo la vecchia analisi e cercando nuove strade (2 tag)
- o Altri dati saranno pronti presto:
 - applicazione correzioni energetiche per massa top

Run I

$M top \texttt{=} 186 \pm 10 \pm 6 \; \text{GeV/c}^\texttt{2}$

